Inputting TraditionalForm Expressions

In Version 2.2, the default input [Graphics:../Images/tricks_gr_1.gif] was [Graphics:../Images/tricks_gr_2.gif] and the default output [Graphics:../Images/tricks_gr_3.gif] was [Graphics:../Images/tricks_gr_4.gif]. In Version 3.0, the default input and output [Graphics:../Images/tricks_gr_5.gif] are both set to [Graphics:../Images/tricks_gr_6.gif]. [Graphics:../Images/tricks_gr_7.gif] provides good readable two-dimensional typeset input and output and is mathematically unambiguous because it uses Mathematica syntax.

Nevertheless, many users would like their input and output to be presented more attractively and to correspond to mathematical syntax as far as this is consistently possible. To this end, Version 3.0 provides [Graphics:../Images/tricks_gr_8.gif]. [Graphics:../Images/tricks_gr_9.gif] can be selected as the default input and output format via Default Input FormatType and Default Output FormatType under the Cell menu.

Since [Graphics:../Images/tricks_gr_10.gif] is, with some slight reservations, the most attractive input and output format, I have decided to use it in these columns.  Also, where required, I will use the [Graphics:../Images/tricks_gr_11.gif] package (the latest version of which is available from http://www.wolfram.com/~jasonh/Notation.html).

It may not always be obvious how to input typeset expressions in [Graphics:../Images/tricks_gr_12.gif]. Probably the easiest way is to type the expression in a [Graphics:../Images/tricks_gr_13.gif] cell using normal syntax, for example,

[Graphics:../Images/tricks_gr_14.gif]

and then use Convert To⊳TraditionalForm on the cell:

[Graphics:../Images/tricks_gr_15.gif]

Note that this expression is not just a [Graphics:../Images/tricks_gr_16.gif] with a subscript [Graphics:../Images/tricks_gr_17.gif] and superscript [Graphics:../Images/tricks_gr_18.gif]. Unformatting the expression (using Show Expression under the Format menu) reveals [Graphics:../Images/tricks_gr_19.gif] in a [Graphics:../Images/tricks_gr_20.gif] at its heart:

[Graphics:../Images/tricks_gr_21.gif]

Here are four examples of the power and convenience of [Graphics:../Images/tricks_gr_22.gif] input notation: directional limits,

[Graphics:../Images/tricks_gr_23.gif]
[Graphics:../Images/tricks_gr_24.gif]

summation with steps,

[Graphics:../Images/tricks_gr_25.gif]
[Graphics:../Images/tricks_gr_26.gif]

hypergeometric functions,

[Graphics:../Images/tricks_gr_27.gif]
[Graphics:../Images/tricks_gr_28.gif]

and change of integration variables,

[Graphics:../Images/tricks_gr_29.gif]
[Graphics:../Images/tricks_gr_30.gif]
[Graphics:../Images/tricks_gr_31.gif]
[Graphics:../Images/tricks_gr_32.gif]

Document converted by Mathematica of Wolfram Research