The Mathematica Journal
Feature Articles
New Products
New Publications
News Bulletins
Write Us
About the Journal
Staff and Contributors
Back Issues
Download this Issue


Introduction to Riemann Surfaces

J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering, Jones and Bartlett, Boston, 1997.
A. F. Monna, Dirichlet's Principle, Ososthoek, Scheltema & Holkema, Utrecht, 1975.
W. F. Osgood, Lehrbuch der Funktionentheorie, Teubner, Leipzig, 1923.
A. I. Markushevich. The Theory of Functions of a Complex Variable, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
E. Reyssat, Quelques Aspecta des Surfaces de Riemann, Birkhäuser, Basel, 1989.

Mathematical Theory of Riemann Surfaces in General

L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton University Press, Princeton, 1960.
J. B. Bost in M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson (eds.). From Number Theory to Physics, Springer, Berlin, 1992.
H. M. Farkas and I. Kra, Riemann Surfaces, Springer, New York, 1992.
E. Hille, Analytic Function Theory, v. II, Chelsea, New York, 1962.
H. McKean and V. Moll, Elliptic Curves, Cambridge University Press, Cambridge, 1997.
A. Pfluger, Theorie der Riemannschen Fläche, Springer, Berlin, 1957.
H. Weyl, Die Idee der Riemannschen Fläche, Teubner, Stuttgart, 1955.

Mathematical Details on Riemann Surfaces of Algebraic Functions

A. Brill, Vorlesungen über ebene algebraische Kurven und algebraische Funktionen, Vieweg, Braunschweig, 1925.
J. Cano in D. L. Tê, K. Saito, B. Teissier (eds.).  Singularity Theory, World Scientific, Singapore, 1995.
H. W. Jung,  Einführung in die Theorie der algebraischen Funktionen einer Veränderlichen,  de Gruyter, Berlin, 1923.
H. E. Rauch and A. Lebowitz, Elliptic Functions, Theta Functions and Riemann Surfaces, Williams & Wilkins, Baltimore, 1973.
M. Trott, Mathematica in Education and Research, "Visualization of Riemann surfaces of algebraic functions," 6 (4) (1997), pp. 15--36.

Weierstrass Method of Analytical Continuation

H. Behnke and  F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer, Berlin, 1962.
P. Henrici,  Applied and Computational Complex Analysis, v. 1, John Wiley & Sons, New York, 1974.

Pictures and Plaster Models of Riemann Surfaces

W. Dyck (ed.),  Katalog mathematischer und mathematisch physikalischer Modelle, Apparate und Instrumente, Georg Olms Verlag, Heidelberg, 1994.
G. Fischer (ed.),  Mathematical Models, Vieweg & Sohn, Braunschweig, 1986.
K. Shihara and T. Sasaki, Japanese Journal of Industrial and Applied Mathematics, 13 (107) (1996).
M. Trott, Mathematica in Education and Research, "Visualization of Riemann surfaces of algebraic functions," 6 (4) (1997), pp. 15--36.
M. Trott, The Mathematica Guidebook, TELOS, Springer, New York, 2000.

Converted by Mathematica      May 9, 2000

[Trott's Corner Index] [Prev Page]