The Mathematica Journal
Volume 9, Issue 2

Search

In This Issue
Articles
Tricks of the Trade
In and Out
Trott's Corner
New Products
New Publications
Calendar
News Bulletins
New Resources
Classifieds

Download This Issue 

About the Journal
Editorial Policy
Staff
Submissions
Subscriptions
Advertising
Back Issues
Contact Information

Trott's Corner
Michael Trott

References

[1] D. H. Bailey, "Finding New Mathematical Identities via Numerical Computations," ACM SIGNUM, 33, 1998 pp. 17-22.

[2] D. H. Bailey and J. M. Borwein in B. Engquist and W. Schmid, eds., Mathematics Unlimited--2001 and Beyond, Berlin: Springer-Verlag, 2001.

[3] J. M. Borwein and R. M. Corless, "Emerging Tools for Experimental Mathematics," American Mathematical Monthly, 106, 1999 pp. 889-909.

[4] L. J. Rogers, "Second Memoir on the Expansion of Certain Infinite Products," Proceedings of the London Mathematical Society, 25, 1894 pp. 318-343.

[5] B. C. Berndt, Ramanujan's Notebooks, Vol. 5, New York: Springer-Verlag, 1998.

[6] G. E. Andrews, B. C. Berndt, L. Jacobsen, and R. L. Lamphere, "The Continued Fractions Found in the Unorganized Portion of Ramanujan's Notebooks," Memoirs of the American Mathematical Society, 99, 1992.

[7] J. McLaughlin and D. Bowman, "On the Divergence of the Rogers-Ramanujan Continued Fraction on the Unit Circle." (October 15, 2001), arxiv.org/PS_cache/math/pdf/0107/0107043.pdf.

[8] J. Yi, "Evaluations of the Rogers-Ramanujan Continued Fraction by Modular Equations," Acta Arithmetica, 97, 2001a pp. 103-127.

[9] B. C. Berndt and H. H. Chan, "Some Values for the Rogers-Ramanujan Continued Fraction," Canadian Journal of Mathematics, 47, 1995 pp. 897-914.

[10] B. C. Berndt, H. H. Chan, S.-S. Huang, S.-Y. Kang, J. Sohn, and S. H. Son, "The Rogers-Ramanujan Continued Fraction," Journal of Computational and Applied Mathematics, 105, 1999 pp. 9-24.

[11] J. Yi, "Modular Equations for the Rogers-Ramanujan Continued Fraction and the Dedekind Eta-Function," Ramanujan Journal, 5, 2001b pp. 377-384.



     
About Mathematica | Download Mathematica Player
Copyright © Wolfram Media, Inc. All rights reserved.